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Abstract. A nanostructure with hard walls is divided into two regions: the terminals and the 
‘cavity’ that connects them. In the absence of a magnetic field the modes in the terminals may 
be written down immediately. The modes in the cavity are calculated by extending each te-al 
mode continuously into the cavity and applying hard-wall boundary conditions elsewhere on the 
cavity boundary. Then a general wave function $ cootinuous everywhere may be written down. 
The relationships between the coefficienu of the modes in 9 are determined by minimizing 
the mean square discontinuity in the normal deivative of @ averaged over all the interfaces 
between the terminals and the cavity. This method has been found to be robust and efficient 
in calculations of the conductance matrix and scattering wave functions for a 20  quantum Wire 
with B hard-wall finger of various shapes pushed in through one side. 

1. Introduction 

In the last decade the behaviour of two-dimensional (ZD) electron gases in semiconductor 
nanostructures has been the subject of intense experimental and theoretical investigation 11- 
31. In the theoretical studies it is usually supposed that the nanostructure has hard potential 
walls at which the electron wave function vanishes. Scattering matrices for sucn a system 
have been calculated either by considering the one-electron Green function [49] or by 
working directly with the electron wave function [7-181. The Green function Fpprpach has 
wide generality and is well established. It yields scattering matrices rel.atiy,ely e.Gily but not 
wave functions. The.wave function approach easily yields both scattering ma6iices and wave 
functions. However, its use is usually restricted to nanostructures that can be broken into a 
number of regions in which the boundary geometry is simple enough to allow a complete 
set of wave functions to be written down. These functions are then superposed and their 
coefficients are related by matching the wave function and its normal derivative across all 
the interfaces between the regions. In this paper we consider the wave function approach 
from a different point of view, which allows a general formalism to be established. We test 
the usefulness of the new approach by applying it to a particular system that is fairly well 
understood [7-181. 

Generality is achieved by recognizing that, in any nanostructure, there are only two 
essentially distinct regions. First we have the terminals through which electrons are injected 
or removed. Each terminal is modelled by a quantum wire with two parallel hard walls. 
Consequently we may immediately write down a complete set of modes in the terminals. In 
addition there is a central region that connects the terminals and is separated from them by 
interfaces we may choose at will. We call this region the ‘cavity’. It often has a complicated 
geometry that makes it necessary to determine the cavity modes numerically. In doing so 
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HARD WALL 

TERMINAL 2 
Figure 1. A schematic diagram of a hard-wall namstluciure. 

we choose the boundary conditions in a way that makes it possible to write down a general 
cavity function that nutomtically matches the wave function in every terminal. Then we 
have only to match the normal derivative of the wave functions on either side of all the 
interfaces to obtain the equations that relate the coefficients of all the other modes to the 
coefficients of the incident terminal modes, which we suppose to be given. 

The plan of the paper is as follows. In section 2 we establish an appropriate notation 
and cmy  through the formal programme outlined above. Section 3 is concerned with the 
numerical implementation of the formalism. In section 4 we describe the results obtained 
in the first application of this generalized matching procedure. The particular system 
considered is a ?D quantum wire with a finger of various shapes pushed in through one 
side. In section 5 we draw some conclusions and discuss the extension of the generalized 
matching method both to other structures and to allow for the presence of an applied 
magnetic field. In the present paper we set the magnetic field equal to zero. 

2. General formalism 

We consider a ZD nanostructure with N terminals. Figure 1 is a schematic diagram for 
N = 2. Oxy is a ‘universal’ coordinate system that can be chosen at will. The continuous 
line is the hard-wall boundary on which the wave function @ ( x . y )  = 0. Within the 
nanostructure @(x,  y )  is the solution of the Schrodinger equation for a free electron: 

az@/ax2 + az@/ayz + ( 2 ~ / r ) ~ @  = 0. 

E = (E2/2m’)(k/A)* (2) 

(1) 

Here A is the de Broglie wavelength, which is related to the electron energy E by 

where m* denotes the effective mass, 
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The parallel lines in figure 1 bound the terminals, which we label with a positive integer 
t .  We also introduce an interface in terminal t ,  which we refer to as interface I (the dashed 
straight lines in figure 1) and a local coordinate system O,x,y, located and oriented as 
indicated. To be precise we define terminal t to be the region where x, < 0. The cavity is 
the interior of the nanostructure, which is separated from the terminals by the interfaces. 

Let wt be the width of terminal 1. A general solution of equation (1) in terminal t is 

W t ,  yt) = ~;,"2[at,exp(iki,xt) + b,, exp(-ik,,x,)lu,,(yt). ' (3) 
m 

Here m is a positive integer labelling the normalized mode functions 

is the longitudinal wave number and 

utm =hl&mllmx. (5b) 

For propagating modes with 2wI/A > m we define k,, to be positive. Then uIm in 
equation (5b) is the magnitude of the electron velocity. Consequently a, (btm) in 
equation (3) is the coefficient of a 'forward' ('backward') wave that carries one electron 
per second into (out of) the nanostructure via terminal t. The factor U,, IS inseqd into 
the right-hand side of equation (3) to achieve this convenient normalization. It has the 
consequence that the scattering matrix relating {b,,] to [a,,"] for propagating modes is 
unitary. 

For evanescent modes with 2w,/*: e m we write krm = iKim where K,, > 0. Then a,, 
is the coefficient of a 'forward' evanescent wave, which increases in magnitude away from 
the cavity. Consequently a,, must be set equal to zero for all forward evanescent waves. 
On the other hand, b,, is the coefficient of a 'backward' evanescent wave, which decays 
away from the cavity and is not restricted. 

We set x, = 0 in @(xi, y,) and a@(x,, y,)/ax, in order to write down expressions for a 
general wave function and its normal derivative on interface t :  

-112 . . 

a@(o' ") 
= u;,"zik,,[a,, - br,]u,,(yt). 

ax, m 

We now seek a solution of Schradinger's equation inside the cavity that reproduces @(O, y,) 
and a@(O, y,)/axi on every interface. It is convenient to approach this matching problem 
by using the universal coordinate system inside the cavity and expressing @(x, y) there in 
terms of a carefully chosen set of cavity modes {S,vm(x, y)} where s and m are both positive 
integers. The wave function S,&, y )  satisfies Schrodinger's equation inside the cavity and 
the boundary conditions &(x, y )  = ~ , ? ~ ( y . ~ )  on interface s and S,ym(x, y) = 0 elsewhere 
on the cavity boundary and on all other interfaces. Consequently we can write the general 
wave function inside the cavity in the form 
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where the coefficient of S,?,(x, y) has been chosen to make @ ( x ,  y) in the cavity continuous 
with @(x,, yf) in terminal t for all r. To check that continuity has been achieved we note 
that the above definition of B,ym(x, y) implies that, as we approach interface t from inside 
the cavity, the cavity modes with s = t are the only ones that contribute to $(x,y) 
in equation (7n) and they reduce to usm(yt) on the interface. Consequently, @(x. y) in 
equation (7u) reduces to @(O, y,) in equation ( 6 4  on interface f for all t .  

It remains for us to optimize the discontinuity of the normal derivative across all the 
interfaces. To consider the discontinuity at terminal t it is now convenient to regard @(x,  y) 
and & ( x ,  y )  as functions of the local coordinates (x,, y,). We write these functions in the 
simple forms @(xi, yr) and yr) respectively since no confusion with @ ( x ,  y) and 
e,,(x, y) is likely to arise. Then, by differentiating equation ( 7 4  with respect to xt we find 
that 
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as the point (0, y,) on the interface is approached from inside the cavity. When the same 
point is approached from inside the terminal the normal derivative is given by equation (6b). 
It is convenient to write that equation in the form 

The right-hand sides of equations (6b) and ( 7 4  are identical because 0,,(0, y r )  vanishes 
when s # I and is equal to utm(y,) when s = t. By subtracting the right-hand sides 
of equations (7b) and (7c) we obtain the following expression for the discontinuity of 
a@(x,, y,) /ax,  at the point (0, yr) on interface t :  

where we leave it understood that e,, and a8,y,/axr are to be evaluated at the point (0, y,) 
in the local coordinate system O,x,yl. The subscripts f and b indicate that the functions so 
labelled are associated with forward and backward waves respectively. 

In a scattering problem the coefficients [a,vm} of all the forward waves are given. Then 
we may determine the real and imaginary parts of the coefficients [&} of all the backward 
waves so as to minimize the error function 

Thus we find the desired equations: 
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where 

and 

To carry out calculations in a particular structure we keep enough terminal modes to 
secure convergence, calculate the integrals in equation (12) and solve a truncated set of 
equations (11) to express the coefficients {b,yml of the retained backward waves in terms 
of the coefficients [a,y,]~of the forward propagating waves. (We set as, = 0 for all 
evanescent modes.) The calculation yields b,, for both propagating and evanescent modes. 
To calculate the element S,,,,, of the scattering matrix we set a,.,. = 6,,&,, and calculate 
6,. S,,,,, for all propagating modes in terminal s. Finally, the off-diagonal elements of 
the conductance matrix are given by 

G.?, = (2eZ/h)g.71 (134 

when s # f .  The factor of two allows for spin degeneracy and the normalized conductance 
g.?, is given by 

We note that G,, is the conductance between reservoirs as defined by Buniker [19], which is 
the quantity usually measured in nanostructures. The conductance between leads originally 
discussed by Landauer [ZO] is not used here. 

The wave function established by a specified combination of propagating forward waves 
is calculated by keeping b,>, for the evanescent modes and substituting both (a.Tm] and [b,J 
into equations (3) and (7n). We discuss the matching procedure in more detail in appendix A. 

3. Numerical implementation 

We consider a 2D physical domain mapped onto a~computational domain defined over a 
rectangular mesh of maximum size 480 x 480. Meshes up to this size have been found to 
be appropriate for all profile shapes and physical domains investigated. For more regular 
structures smaller mesh sizes are adequate; indeed sensible results may be obtained for 
meshes as small as 120 x 120. 

The profile of the intrusions into the cavity is defined analytically and superimposed 
onto the mesh. The value of the wave function @ on the boundary and around the intrusions 
is set equal to zero, with appropriate non-zero values on the boundary of each terminal in 
turn. An advantage of our computational procedure is that both the physical domain and 
the intrusion profile may be of arbitrary shape, thus allowing wave function matching to be 
performed in nanostructures of any shape. 

The evaluation of @ at all interior points is achieved by solving the discretized 
Schrodinger equation directly. Schrodinger’s equation is approximated by a set of sparse 
linear equations which, after LU decomposition, is solved for $. The values of @ thus 
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computed correspond to a particular mode in a specific terminal, i.e. a terminal-mode 
pair. The  above procedure is repeated for several modes in all terminals, creating a set 
of $ values on each occasion. As is clear from the formalism there is, for a particular 
de Broglie wavenumber, a finite number of propagating modes and an infinite number of 
evanescent nodes. Investigations into the number of evanescent modes to be included in 
the computations have shown that, for structures sufficiently far away from the terminals, 
there is no significant advantage achieved by including more than five evanescent modes. 
Consequently all computations include five evanescent modes and the appropriate number 
of propagating modes. 

For each set of $ values the derivatives across the appropriate interface are computed 
numerically. Once the values of @ and its derivative are known for all terminal-mode pairs 
it is straightforward to solve the set of complex linear equations relating the derivatives and 
the coefficients {b,). From the resulting {b,] the scattering matrix for a specific terminal- 
mode pair is easily calculated, and hence the conductance g12 follows. Thus we may plot 
the variation of gl2 with 2wlh where w is the width of the channel and h is the de Broglie 
wavelength. In order to plot the wave function contours we select an input propagating 
mode in a particular terminal and use the corresponding $ values computed for all modes 
in all terminals to obtain I$[' for the terminal-mode pair. It is a trivial extension to obtain 
wave function contours once the scattering matrix has been computed. 

All computations have been performed on the Cray Y-MP/8 at the Rutherford Appleton 
Laboratory with the graphical postprocessing on a Sun SparcStation. The code has been 
optimized to take advantage of the multiprocessor Y-MP/S architecture and permits efficient 
automated generation of conductances and wave functions for arbitrarily shaped intrusions 
into arbitrarily shaped 2D structures over a range of wave vectors. Subsequent papers 
will show the application of the method to resonant ballistic structures and to disordered 
structures. The introduction of a magnetic field into the computational algorithm is 
straightforward and is currently under development. 
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4. Applications of the formalism 

As a preliminary indication of the power of the formalism developed in sections 2 and 3 
we present results obtained by applying it to three simple structures. The first structure is 
shown in figure 2. It consists of a 2D quantum wire with width w into which is introduced 
a flat-topped finger with height h and width d .  The width w' = w - h of the aperture above 
the finger plays a dominant role in determining the behaviour of this structure [7]. The 
cavity lies between the dashed lines and has length L = 2w in all our calculations. The 
second structure is obtained by capping a flat-topped finger with a hard-wall semicircle of 
radius d / 2  (shown dotted in figure 2). In this case w' denotes the open aperture above the 
top of the semicircle and h is the total height of the capped finger. In the third structure, 
which we consider only briefly, the finger has a Gaussian shape we describe later on. 

The curves in figure 3 show the dependence of the normalized conductance glz on 2 w l h  
calculated for the first structure when d = 0 . 4 ~  and w' = w (i.e. for an open quantum 
wire), 0 . 3 ~  and 0 . 1 ~ .  The open quantum wire is cut off when 2w/h < 1 and N modes 
propagate through' it when 2wlh t~ N .  We see that the calculated values of glz have 
the familiar staircase structure [I-31 in which g12 increases by one each time a new mode 
propagates in the quantum wire. For w' = 0 . 3 ~  and 0.lw the behaviour of g12 has a similar 
structure, as expected, but it is now the number of modes M propagating above the finger 
that determines the height of the plateaus. Steps occur when 2w'lh is equal to M, i.e. when 
2w/h  = Mw/w'  = 3.33M and 10M when w'/2 = 0.3 and 0.1 respectively. 
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Figure 2. The nanostlllcture considered in the calculations. The doffed curve is a semicircular. 
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Figure 3. The dependence of the normalized conductance g , ~  on ZwfA, where 
Broglie wavelength, for a flat-topped finger when d = 0.4~ and w' = w (full 
(dashed line) and 0 . lw (dotted line). 

4 I 
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J. 

A is the de 
line), 0 . 3 ~  

The quantization of g f 2  when w' = w is a trivial consequence of the diagonal scattering 
matrix for this case: lSim,bIZ = LA. We therefore see immediately from equations (13) 
that 812 = N .  The quantization of gfz when w' c w is more subtle. It is interesting, in 
this regard, to look more closely at the contributions to 812 for the point 2wfh = 5 on 
the dashed curve in figure 3 (w' = 0 . 3 ~ ) .  This point is on the first plateau and we chose 
it because it lies beyond the initial oscillations of gf2 on the plateau, which are discussed 
below. There are four propagating modes in the quantum wire and one in the region above 
the finger if we regard that as a narrow quantum wire. We see from equations (13) that this 
is the sum of the calculated values of JS,m,2n)2, which are given in table 1. 

We see that the entries in the table are nearly symmetrical. The exact entries would be 
completely symmetrical because the structure we consider is symmetrical. We have taken no 
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Table 1. Contributions lo $12. 

n = 4  
......................... ,,,,,.,., , , , ,  , ,  , , , , ,  

,” n = l  n = 2  n = 3  

I 0.03632 0.078 10 0.05868 0.01850 
2 0.07598 0.16480 0.12570 0.04017 
3 0.05577 0,12260 0.09525 0.03081 
4 0.01778 0.03939- 0.03081 0.009751 

steps to incorporate this fact into the calculation. Consequently the deviations of the entries 
in the table from a symmetrized version of it provide a measure of our numerical error. In 
the worst case (m = 3, n = 1) the error is 2.5%. This could 6e improved by decreasing the 
mesh size or increasing the number of evanescent modes. However, doing either of these 
things has a negligible effect on the quantities of direct interest to us: g12 and the wave 
function contours. The exact sum of all the entries in the table is g12 = 1.00041, which is 
unity to a much greater accuracy than we would expect. We quote this figure because it is 
representative of a general feature of our results: when quantization occurs it is achieved 
with much higher accuracy than would be expected from the accuracy of &,+,I2. With or 
without symmetrization, there are no special features of the array in table 1 that help one 
to understand why the sum of the entries in it add up to a number close to one. They do 
so because the quantization reflects the internal geometry of the cavity [7] as discussed in 
appendix B. 

We see in figure 3 small oscillations of g12 at the beginning of each plateau when 
w’ # w. They are due to interference between the waves reflected by the sharp corners on 
the top of the finger [7,8]. If this interpretation is correct we would expect the oscillations to 
disappear if the finger were capped with a hard-wall semicircle as shown by the dotted curve 
in figure 2. We test this expectation by using the calculated results presented in figure 4. 
The full line reproduces the plot already given for a flat-topped finger with d = 0 . 4 ~  and 
w’ = 0.3~. It is to be compared with the dashed line, which shows the behaviour of g12 
when the same aperture is achieved by using a flat-topped finger of the same width but 
with height 0 . 5 ~  and capping it with a semicircle of radius 0 . 2 ~ .  We see that the plateaus 
remain well developed and are indeed free from interference oscillations. Rounding off the 
top of the finger also broadens the rising edges between plateaus. 

The dotted curve in figure 4 shows the behaviour of g12 for a finger with a Gaussian 
shape. The height at a distance x away from the centre of the finger is given by 
H(x) = hexp(-x2/ZuZ) where U = 0 . 3 ~  so that H(x) is small on the interfaces. We 
put h = 0.7~ so that the maximum finger height and the aperture above it are the same 
as for the other two curves in figure 4. Nevertheless, we see that the behaviour of g I 2  is 
different. It keeps the same step size, achieves integer values near the centres of what are 
good plateaus on the other two curves and shows no oscillations but flat plateaus are not 
formed. This is because the radius of curvature at the top of the Gaussian finger is only 0.28 
of that of the capped finger. The region above the finger is consequently too nmow for 
good plateaus to form. The behaviour of the thin finger with U)‘ = 0 . 3 ~  shown in figure 5 
is similar. 

The curves in figure 5 are calculated for thin, flat topped fingers with d = 0.0667~. The 
strict staircase (full curve) is the open quantum wire result for w‘ = w. When w‘ is reduced 
to 0 . 8 ~  (dashed curve) the very tiny finger is beginning to have effects on the step length, 
plateaus and rising edgk but the effects are much less than they are €or broad fingers. When 
w’ = 0 . 5 ~  (dotted curve) the step length has increased to two, as it does for broad fingers, 
but there are no plateaus. We find cusps at the expected values of 2w/h = 2,4,6,8, . . . and 
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2w/A 
Figure 4. The dependence of the normalized conductance 812 on 2w/A where A is the de Broglie 
wavelength. The full curve is for a Rat-lopped finger that leaves open an apenure w' = 0.3~. 
The dashed line is for a finger upped by a semicircle that leave$ open the same aperfure. In 
both uses the width of the finger is d = 0 . 4 ~ .  The dotted curve shows the behaviour for the 
Gaussian shaped finger described in the text, which also has w' = 0.3~. 

0 4 8 
2W/A 

Figure 5. The dependence of the normalized conductance 912 on 2w/A, where A is the de 
Broglie wavelength, for thin fingers with Rat tops. The thickness d = 0.0667~ in all uses and 
w' = w (full line), 0 . 8 ~  (dashed line), 0 . 5 ~  (dotted line) and 0 . 3 ~  (dashed-doned line). 

continuously rising curves between these points which never quite rise to the next integer 
value of gI2 before the next cusp occurs. Finally, when w' = 0.3w, (dot-dashed curve) we 
find weakly formed plateaus with continuously rising curves between them. 

In figures 6, 7 and 8 we show contour plots for [@Iz inside the cavity. In every case 
the incident wave is mode 1 in terminal 1 ,  i.e. the only non-vanishing coefficient arm in 
equation (3) is all, which is set equal to unity. The contour plots are therefore concentrated 
on the left of the finger in all three figures. The plots are all for the same structure, which 
has a centrally placed, flat-topped finger with width 0 . 3 ~  and height 0 . 7 ~ .  Figure 6 is for 



754 P N Butcher and J A Mclnnes 

0.00q I I I I- 
0 .o 0.3 0 . 6  0.9 

x/L  

Fiyre 6. Wave function contours when d = 0 . 4 ~ .  w' = 0.3~ and 2mJA = 2 (no tnnsmission). 

0 .OO~----, I I rl- 
0 .0  0.3 0.6 0.9 

x / L  
Figure 7. Wave function contours when d = 0.4, w' = 6.3~ and 2wlA = 5 (first plateau). 

2wfA = 2 where A is the de Broglie wavelength. We see from the dashed curve in figure 3 
that there is negligible propagation over the finger in this case. Consequently, the contours 
extend only a small distance into the region over the top of the finger. The longitudinal 
period of the strong standing wave pattern on the left of the finger is equal to half the 
longitudinal wavelength of the dominant (n = 1) mode there. Moreover, we note that one 
half wavelen-d is fitted in between the walls of the terminals. Thus. the behaviour of 
the standing wave pattern on the left is controlled by the incident wave, which is the only 
propagating mode there when 2w/h = 2 

Figure 7 is for 2w/A = 5, which is in the middle of the first plateau in figure 3. Thus, 
one mode can now propagate over the finger and this mode consequently determines the 
standing wave pattern there. On the left the standing wave pattern is again determined by 
the incident wave. On the right of the finger four waves can propagate and a complicated 
standing wave pattern develops from their interference. 

Finally, figure 8 is for 2wjA = 8, which is on the second plateau in figure 3. The 
incident wave again determines the standing wave pattern on the left. Over the finger the 
dimensions of the structure of are commensurate with the n = 2 mode dominating 
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0.40 

Y'L 

0 .00 
0 .0 0.3 0.6 0.9 

x/  L 
Figure 8. Wave function wntours when d = 0 . 4 ~ .  w' = 0 . 3 ~  and 2 w / l =  8 (second plateau). 

there while, on the right, seven modes can propagate and the standing wave pattern again 
shows considerable structure as a result of their interference. 

5. Conclusion 

The matching procedure described in this paper can be used to calculate wave functions, 
scattering matrices and conductance matrices for nanostructures with many different 
geometries. In the structures considered here the new matching procedure has been found 
to be fast, accurate and robust. Some of the structures studied can also be investigated by 
using conventional matching [7]. To do that it is necessary to insert more interfaces into 
the cavity so that the wave function in each region can be expressed as the sum of a series 
of analytic functions. Then both the wave function and its normal derivative are matched 
across every interface. We have included two cases in which this approach fails: firstly, 
when the finger is capped with a semicircle, and secondly, when it has a Gaussian profile. 
Neither of these finger profiles yields a set of analytic functions. In our new procedure the 
required set of cavity functions is generated numerically. Consequently, arbitrary cavity 
geometries can be treated almost as fast as simple ones. In another paper we discuss the 
resonant tunnelling that occurs when two identical fingers are pushed into the cavity [Zl]. 

However, the introduction of random 
scattering centres into the cavity is easily accomplished. The required potential has only to 
be specified prior to the determination of the cavity wave functions [22]. The calculation 
becomes particularly simple when a white noise potential is set up on the numerical mesh 
used to calculate the cavity functions [3,8,13]. Finally, the formalism is easily modified 
to allow for the presence of a constant magnetic field throughout the nanostructure [18]. 
In this case, however the terminal modes must be calculated numerically in addition to the 
cavity functions. This additional calculation has a ID character and does not significantly 
affect the running time of the programme [17,23]. Finally, the formalism used here for ?D 
electron zases is easily generalized to handle 3D structures. The computing time, however, 
will escalate considerably when 3D smctnres are considered. 

We have concentrated on ballistic transport. 
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Appendix A. Comments on the matching procedure 

We show, first of all, that any exact solution @ ( x ,  y) of the scattering problem has 
coefficients [atm) and [btm) that satisfy the matching equations (11) and give E = 0 in 
equation (10). Thus, given + ( x ,  y) ,  we may immediately determine [&) and (brm) from 
equations (6) because the mode functions (ul,(yr)} are orthonormal. Inside the cavity we 
know that + ( x ,  y )  has the following properties: it satisfies the wave equation (I), it is 
equal to ( 6 4  on each interface t and it vanishes elsewhere on the cavity boundary. These 
conditions determine @ ( x ,  y )  uniquely inside the cavity. The cavity functions [O,vm(x. y ) }  
have been specifically defined to ensure that the right-hand side of equation (7n) has precisely 
these properties. It is consequently a correct representation of $ ( x ,  y )  inside the cavity. 
The discussion in section 2 therefore yields equation (8) for the discontinuity of the normal 
derivative E,(y , )  across interface t ,  which vanishes because + ( x ,  y )  is an exact solution of 
the scattering problem. Consequently the error function E in equation (10) also vanishes. 
Moreover, when we set E,(y,) = 0 in equation (S), multiply by &,b(yt), integrate over the 
interface and sum over t the result is equation (1 l), on which all our subsequent calculations 
are based. Thus as stated, E = 0 and equation (1 1) is satisfied for an exact scattering wave 
function. 

When we seek an approximate solution of equation (1 1) we keep only a finite number 
N of the modes in the terminals together with their associated cavity functions. We also 
keep only the N equations (1 1) that involve these functions in the coefficients M,!L,,,ym and 
M:&,,,ym. Then the equations have a unique solution. The error function is no longer zero 
but the equations (11) ensure that it has the minimum value that can be achieved in the 
truncated function space. 

Finally, we note that the sum over t in equation (10) plays no role when we consider 
an exact solution because E,(y,) = 0 for all t .  However, it has an important function when 
we seek approximate solutions because it gives equal weight to the contribution to the error 
function from each interface. 

Appendix E. Quantization in quantum wire structures 

We sketch a flat-topped finger structure in figure 1 consisting of three quantum wires: 
terminal 1, terminal 2 and region 3, which is the space over the top of the finger. Provided 
region 3 is long enough, we may use a scattering matrix description of the entire structure 
as illustrated in figure B 1. The rectangular boxes show schematically the connection of 
region 3 to terminal 1, which is described by a scattering matrix S and the connection of 
terminal 2 to region 3 which is described by another scattering matrix 2. We write a,, bj 
and bz for the column matrices of the coefficients of waves travelling to the right in the 
regions indicated. Similarly we write, bl,  a, and aZ for the column matrices of coefficients 
of waves travelling to the left. 
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b, 

We may express the relationships between these quantities in a partitioned form: 

bl = S I I ~ I  +S13a3 

b3 = + h a 3  

- 
b. - b2 - 

S 2 - - - - a3 -a, 

and 

As Szafar and Stone have emphasized [7], quantization may be expected when waves 
incident from region 3 are not reflected, i.e. when S33 = 5 3  = 0. Then we may immediately 
eliminate a3 and b3 from the above equations to find the scattering matrix connecting 
terminals 1 and 2: 

Moreover, in zero magnetic field, we know that both the rows and the columns of a scattering 
matrix form an orthonormal set of vectors. Since S33 = Z33 = 0 we see from equations (B 1) 
and (B2) that 

and 
N 

where both k and e take integer values 1,2, ... ,M. Here N is the number of modes 
propagating in terminals 1 and 2 and M is the number of modes propagating in region 3. 

With these preliminaries we may immediately manipulate equation (136) to show that 
g12 = M. Thus we have, in an obvious notation, 

Thus, while diagonality of the scattering matrix is sufficient for quantization, it is not 
necessary. For the structure shown in figure 1 we find that g I 2  is well quantized when there 
is strong channel mixing because there is negligible backscattering of waves leaving the 
region above the finger. 
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